Predatory Search-based Chaos Turbo Particle Swarm Optimisation (PS-CTPSO): A new particle swarm optimisation algorithm for Web service combination problems
نویسندگان
چکیده
منابع مشابه
Geometric Particle Swarm Optimisation
Using a geometric framework for the interpretation of crossover of recent introduction, we show an intimate connection between particle swarm optimization (PSO) and evolutionary algorithms. This connection enables us to generalize PSO to virtually any solution representation in a natural and straightforward way. We demonstrate this for the cases of Euclidean, Manhattan and Hamming spaces.
متن کاملA Synchronous-Asynchronous Particle Swarm Optimisation Algorithm
In the original particle swarm optimisation (PSO) algorithm, the particles' velocities and positions are updated after the whole swarm performance is evaluated. This algorithm is also known as synchronous PSO (S-PSO). The strength of this update method is in the exploitation of the information. Asynchronous update PSO (A-PSO) has been proposed as an alternative to S-PSO. A particle in A-PSO upd...
متن کاملPerceptive Particle Swarm Optimisation
Conventional particle swarm optimisation relies on exchanging information through social interaction among individuals. However for real-world problems involving control of physical agents (i.e., robot control), such detailed social interaction is not always possible. In this study, we propose the Perceptive Particle Swarm Optimisation algorithm, in which both social interaction and environment...
متن کاملStandard Particle Swarm Optimisation
Since 2006, three successive standard PSO versions have been put on line on the Particle Swarm Central [10], namely SPSO 2006, 2007, and 2011. The basic principles of all three versions can be informally described the same way, and in general, this statement holds for almost all PSO variants. However, the exact formulae are slightly di erent, because they took advantage of latest theoretical an...
متن کاملA New Binary Particle Swarm Optimisation Algorithm for Feature Selection
Feature selection aims to select a small number of features from a large feature set to achieve similar or better classification performance than using all features. This paper develops a new binary particle swarm optimisation (PSO) algorithm (named PBPSO) based on which a new feature selection approach (PBPSOfs) is developed to reduce the number of features and increase the classification accu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Future Generation Computer Systems
سال: 2018
ISSN: 0167-739X
DOI: 10.1016/j.future.2018.07.002